TRANSPORT EQUATIONS FOR A COMPLEX MIXTURE
IN A THERMAL-DIFFUSION COLUMN |
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Transport equations are derived for a thermal-diffusion column containing a multicomponent
molecular mixture.

The existing theory of thermal-diffusion columns [1] is restricted fo binary mixtures; a generalization
to multicomponent mixtures [2] relates only to the particular case of isotope mixtures. It is an open question
whether the theory is applicable to any liquid or gaseous mixture containing an arbitrary number of compo-
nents. :

Here we employ general phenomenological arguments in a reasonably rigorous discussion of thermal dif-
fugion in any mixture; transport equations are derived for a thermal-diffusion column and application {o partic-
ular separations are discussed.

1. Diffusion Fluxes in the Presence of Thermal Diffusion in a Multicomponent System. Reasonably
general arguments provide an expression for the diffusion flux of the k-th component in a system containing
M components as [3}

M1 ' o
or (s —v) = —p ¥ Dyye, —pDiy InT. M

i=1

However, this equation is not by any means convenient for practical purposes. The diffusion flux is usually
written in a rather different form for a binary system, namely in terms of the thermal-diffusion constant o:

03 (va—V) = —pDlye; +acy (1 —c)yInTL. _ )

The advantages of this are firstly that it is possible to define the concentration dependence of the thermal-dif-
fusion term in (2) (this dependence can be neglected in certain instances), Secondly, this constant is to be
preferred as a means of describing thermal diffusion, since it has a simple physical meaning and can readily
be derived from steady-state measurements on the concentration and temperature gradients. The following
equation applies for this state: :

ver = —acr(l—c)yinT. ' &)

Equation (2) is readily generalized to any number of components; we define the thermal-diffusion constants
for a multicomponent system as the following quantities:

Oy = Q) — @, : 4)

where the ai have the following simple relation to the steady-state concentration and temperature gradients
measured:

ving, = —ayinT. (5)
Equations (4) and (5) become (3) for a binary system. Also, (5) implies
M
2 ca; = 0. (6
=1

We see from (4) and (6) that only M =1 is independent out of all the oy, and we therefore note the follow-
ing obvious features:
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aki = —;a'ik’ (7)
Qpy + Oy = Oy ®)
Oy + Xjn = Oy + %jie (9)

In the steady state, there are no diffusions fluxes, and therefore the right side in (1) can be equated to
zero. This produces the following result with (5):

M—1 .
Dz = DhiCiai. (10)
2
Then (4) and (6) transform the latter to
: M—1 M
Dl = 2 Dy; 2 CiCil;j. 1)
i=l =1
We substitute (11) into (1) to get
' M1 M
Pr (Vi —V) = —p 2 Dy, (Vci +¢; ¥ gevin T) . 12)
=] =1

This is a generalization of (2) to any number of components; this can sometimes be simplified, A particular
case of (12) is, for example,

M
P (v, — V) = —pD (Vch +ck2 €0V lnT) , (13)
i=1

which Jones derived for an isotope mixture {4]. Jones derived this from Hellund's kinetic ﬁheory for gas mix-
tures [5, 6]. As we have derived (12) purely phenomenologically, one concludes that it applies in general for
any liquid or gaseous mixture,

An obvious relation is

M—1
Cy=1— gl <, 14)
and this with (7) and (8) allows us fo represent (12) as
M-—1 C M~1
Pr (vh -—-V) =—p 2 Dki {Vci +¢; (aiM'_‘Z achf) \% In T] . (15)
i=1 f=t

The diffusion-flux representations of (12) and (15) are the most convenient when the thermal-diffusion
constants are independent of the concentrations; the molecular theory of mixtures implies that this is so if
the radial distributions are independent of concentration [7]. This applies particularly to isotopic mixtures,
and also to regular molecular solutions, since it is found [8] that the radial functions of a regular solution are
independent of concentration. Clearly, this condition is met if the parameters of the molecules do not differ
too substantially, If the thermal-diffusion constant for the component pair k and i is independent of concentra-
tion, it is then also independent of the other components in the mixture and is actually equal to the thermal-dif-
fusion constant for a binary mixture of molecular species k and i. However, (12) and (15) are more convenient
than (1) even when the ak; cannot be taken as independent of concentration, since the thermal-diffusion con-
stants can be derived directly by experiment, in contrast to the thermal-diffusion coefficients.

2, Diffusion Fluxes in Different Frames of Reference, The fluxes given by (12) are defined in a frame
of reference linked to the center of mass; the concentration has the meaning of a mass fraction. A different
definition of the diffusion fluxes has sometimes been used (in the mole-center system). In that case, the cc'my—
centrations are expressed as molar fractions xi, which are clearly related to the mass values

o = TR 1, (16)
m

where m is the mean molar mass of the mixture, i.e.,

443



m= 2 mx;. amn

One therefore has to examine how the transport coefficients alter on going from one system to another, It is
readily seen from (4), (5), and (16) that the thermal-diffusion constants are unaltered on going from mass con-
centrations to molar ones, which is an advantage of these constants over the thermal-diffusion coefficients,
The corresponding transformation of the diffusion coefficients may be examined by reference to the pure dif-
fusion terms in the fluxes:

M—1
Pr (Vg — V) = —p 2 Dyves, (18)
i=1
M-
Ny (Ve —u) = —n 2 D, vx;, (19)

i=1

where u is the velocity relative to the center of moles, i.e.,

M
u= 2 X;V;. 20
i=1
Appropriate steps with (16)-(20) give the following relationship between the diffusion coefficients in the two
frames of reference:

' 1 TR m—my Y L1 1
D, =m;|— Dy;—x 2‘ ———~—> D | ———— M1 mx; | — Dy —x —— —— Dy | .
. [ b k ( J] ﬁf 1 X1 o (5 k}_dl ( i (21)

my, dowd \ mj My m m; My

We see that in general the diffusion coefficients in the two systems have a very complex relation; in certain
particular cases, these coefficients are invariant under change in the frame of reference, which applies
particularly for arbitrary systems, where a single diffusion coefficient applies. This follows from (21) for
M =2, The diffusion coefficients for multicomponent isotope mixtures are also invariant.

The only nontrivial case of invariance in the diffusion coefficients for a multicomponent molecular mix-
ture is an infinitely dilute solution of several substances in a solvent; a solution can be taken as infinitely dilute
if the concentrations xj are much less than 1. In that case, one can neglect the concentration dependence of
the diffusion coefficients, and therefore the Dyj and D} . matrices are diagonal and equal. In other cases the
diffusion coefficients are dependent on the choice of frame of reference, and therefore one has to state not
only the magnitudes of the diffusion coefficients but also the frame of reference for which these are defined for
any molecular mixture containing more than two components. In particular, the equations for the diffusion
fluxes in the presence of thermal diffusion take the following form in the mole-center system:

—1

M. M '
ny (Vg —u) = —n 2 Dy, (in + X 2 X043y In T) ’ (22)

i=1 =1

where the relation between Dj; and Dy; is given by (21).

3. Transport Equations for a Thermal-Diffusion Column. Jones and Furry used (2) to derive the trans-
port equations for a binary mixture in a thermal-diffusion column [1]. A detailed derivation of this equation
is given also in [9]. The arguments used in that derivation can be extended to any number of components,
but it is then necessary to start from the diffusion-flux equations of (12), We then get the following transport
equations: :

- &, o '
Ty = 0C, + O 2 Hy; E K 'a—i s 23
T=1 =1 0z ‘ '
where
4
Hy; = Hooy; 24
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H, — &B°F (ATYB (25)

6T
Ky = Ki? + K9 (28)
Ki2 = ————gz“z"sag-l‘r——fm O s @7)
KiP = BdoD,,. (28)

Here (D"‘)ki indicates the element in the k~th row and i-th column after inversion of the diffusion-coefficient
matrix for the center-of-mass system,

From (7), (8), (14), and (24) we rewrite (23) as

Ty = OC, - HyCp, (“m ——-g a.Mc,-) —M“Wl K; _‘2‘_’:_ . (29)
: ¢ .A=1‘ T 9z

Unfortunately, the structure of the Ky matrix is unknown in the general case, since the structure of the
diffusion-coefficient matrix is also unknown. It is therefore impossible to obtain a general solution by means
of (23) and (29) if no additional assumptions are made about the diffusion coefficients,

Equations (23) and (29) have been written for the mass concentrations, and therefore T) has the meaning
of the mass flux of the k-th component through the column cross section, while ¢ is the mass flux of the entire
mixture through the cross section, i.e.,

M
o= X% (30)

{=1

In some instances it is convenient to convert to the molar concentrations in the transport equations, for this
enables one, for example, to linearize these equations for dilute solutions, It is best to replace 7k by T} on
going to the molar concentrations, and this is the flux in moles of the k-th component through the cross sec-
tion. Clearly, the following relationship applies:

T, = S (31)
ny
Correspondingly,
M
o' = 2 T, (32)

=l
is the number of moles of the entire mixture passing through the section of the column in unit time. Then (16)
and (30)-(32) allow us to relate this quantity as follows to the mass characteristics: '

M—1
, o <7 1 )
=2 N (= - 2@ —or). (33)
- ’Lg&(m,- o )i e
In the nonstationary case, o and ¢ may be dependent on z, since then the mass and molar concentrations in
general vary with time; however, the quantities of practical value are ¢(z) and o(2'), namely at the end of the
column (z = L, at the sampling point). An obvious boundary condition is

(5 — 0C)emz = 0, (34)
and from (33) we get
’ — Y (L)
o' (L) = —————m(L) . (35)

Then o(L) and o' (L) are simply the mass and molar amounts tapped off.
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Then (4), (6), (14), (186), (24), (31), and (33) allow us to convert to molar characteristics in (23), andthe
transport equations become

M—1

T = 0%+ 2 V K -2 (36)

i=l1

where '
Hﬁ:i = H;;aki; (37
H,
H) = _mi , (38)
and the Ki{1 are related to the Ki; as follows:
K,__:i[__,(k_&kv e Y e my RY me [ L & NS
M m ' (mj mm) o _n?*“ ”[mh M xk_zll(_m:.—”—i)&l}' 39)
. = =
This relationship takes the simplest form for a binary mixture:
K
K =—.
m (40)

Then (7), (8), (14), (18), (17), and (37) converts (36) to

M—l — 1

T, =0'x, + Hx (’am ) sﬂ . ax . (41)

1-—-'1

If the diffusion-coefficient matrix is known, we can use (29) and (41) directly to examine steady-state
processes in the column, but these equations must be supplemented with appropriate equations of continuity
for transient states, and these take the following forms for the mass and molar concentrations respectively:

0BS %’L - .‘.’aIZL ~0, (42)
nB8 ——a;‘t"' + ﬂ__a;,; =0. “3)
Z

The following is an important point relating to the linearization of (29) and (41) for small values of cik
and xi; let the main component (solvent) be M, while the concentrations of the other components are low
enough for us to take only the linear terms in the equations. In that case, the diffusion-coefficient matrix
may be taken as diagonal, and '

Dy; = D,, = D >6k,, (44)
and therefore (17), (26)-(28), (39) give us that
Kpi = mK,, = K{M8§y,, (45)
where
xon - EBOSATEB | o o
K;M) = W, il B(spDk . (46) .
Then (29) and (41) become
’ M Bch
T =0r; -+ Hya,,rn — KM = 47
. ’ ' , ax
T, =0 Xy - Hp“kmxh—'- o K "‘(T:‘ (48)
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An important point is that (47) and (48) are not always equivalent, because the conditions of smallness for ¢y
and x;. are themselves not always equivalent.

NOTATION

B is the width of slot;
ck is the mass concentration of component k;
Dki are the diffusion coefficients in the center-of-mass system:
Di{i are the diffusion coefficients in the mole-center system;
DT is the thermal-diffusion coeifficient for component k in the center-of~-mass system;
D is the diffusion coefficient for a binary mixture;
Dl(gM) is the diffusion coefficient of the k-th component in solvent M at infinite dilution;
g is the acceleration due to gravity;
M is the number of components;
my is the molar mass of component k;
m is the mean molar mass of mixture;
ny is the molar concentration of mixture;
T is the absolute temperature,
T is the mean temperature in annulus;
AT is the temperature difference across annulus;
u is the mean molar velocity of mixture;
vk is the hydrodynamic velocity of component k;
v is the mean mass flow rate of mixture;
Xy is the molarity of component k,
2 is the height coordinate;
Qi is the thermal-diffusion constant for pair k and i;
o is the thermal diffusion constant for binary mixture;
B8 is the volume expansion coefficient of mixture;
6 is the width of annulus;
Oki is the Kronecker symbol;
7 is the viscosity;
[ is the mass concentration of k-th component in mixture;
o] : is the density of mixture;
g is the mass flow rate;
a! is the molar flow rate;
Tk is the mass flow rate of component k through column;
Tk is the molar flow rate of component k.
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